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We report numerical evidence of the discontinuous transition of a tethered membrane model which is defined
within a framework of the membrane elasticity of Helfrich. Two kinds of phantom tethered membrane models
are studied via the canonical Monte Carlo simulation on triangulated fixed connectivity surfaces of spherical
topology. One surface model is defined by the Gaussian term and the bending energy term, and the other, which
is tensionless, is defined by the bending energy term and a hard wall potential. The bending energy is defined
by using the normal vector at each vertex. Both models undergo the first-order phase transition characterized
by a gap of the bending energy. The phase structure of the models depends on the choice of discrete bending
energy.
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I. INTRODUCTION

Tethered membrane models[1–4] are ordinarily defined
by a Hamiltonian that is a linear combination of discrete
bending energy and surface tension energy[5,6]. Hence,
there may be a variety of statistical models of membranes,
since discrete Hamiltonians can be chosen arbitrarily even
within the Helfrich or Polyakov-Kleinert prescription of
membranes. As a consequence, it is natural to ask whether
the phase structure[7–11] of the model depends on the
Hamiltonian.

However, little attention has been given to the dependence
of the phase transition on the Hamiltonian of tethered sur-
faces both for models that have surface tension[12–21] and
for tensionless models[22–27]. Almost all numerical studies
done so far utilize the bending energy of the ordinary form
1−ni ·n j, whereni is the normal vector of trianglei.

One other discrete bending energy that has been utilized
by Gompper and Kroll[28] is based on the discretization of
the Laplacian in the dual lattice formulation of discrete me-
chanics by Lee[29]. Similar discrete bending energy was
adopted in Refs.[14,17,30]. Both discrete bending energies
give results compatible with the continuous phase transition
of the model[7–11].

Recently, it was reported[31] that a tethered membrane
model with ordinary bending energy undergoes the discon-
tinuous phase transition predicted in[32], although the
Lennard-Jones(LJ) potential is assumed to serve as the
Gaussian term. Hence, we thinkit is worthwhile to show that
the discontinuous phase transition can be seen in a tethered
membrane model when the Hamiltonian is defined only by a
discretization of the Helfrich Hamiltonian.

The purpose of this paper is to show numerical evidence
that the phase structure of phantom tethered models depends
on the choice of the discrete bending energy. By using the

normal vector at each vertex, we define a bending energy
which is different from the ordinary one. We will study two
kinds of models: one is a model that has the Gaussian term
for surface tension and the other is a tensionless model that
has no surface tension term but has a hard wall potential. It
will be shown that both models undergo a first-order phase
transition.

II. MODEL AND MONTE CARLO TECHNIQUES

Membrane models are ordinarily defined by the discrete
HamiltonianS=S1+bS2 with bending rigidityb, whereS1 is
the surface tension energy andS2 is the bending energy, re-
spectively, defined by

S1 = o
si j d

sXi − Xjd2, S2 = o
si j d

s1 − ni ·n jd. s1d

osi j d in Eq. (1) is over all bondssi j d, and ni, n j are the
unit normal vectors of the triangles sharing the bondsi j d.
Xi
sPR3d in S1 is the position of the vertexi.

The other possible bending energyS2 can be obtained by
using the normal vector of the vertexi such as

nsid =
Ni

uNiu
, Ni = o

jsid
n jsidAD jsid

, s2d

whereo jsid denotes the summation over trianglesjsid linked
to the vertexi. The vectorn jsid is the unit normal of the
triangle jsid, andAD jsid

is the area ofjsid.
The new discrete bending energy can be obtained by us-

ing the normal vector of Eq.(2). Thus, we have

S2 = o
i

o
jsid

f1 − nsid ·n jsidg, s3d

which is clearly different from that of Eq.(1). It should be
noted thatS2silldefd=oi,jf1−nsid ·ns jdg defined only by using*Electronic address: koibuchi@mech.ibaraki-ct.ac.jp
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the normal vectorsnsid in Eq. (2) is not well defined. This ill
definedness comes from the fact that there exist two surfaces
locally different from each other that have the same value of
S2silldefd. Two normal vectors at the ends of a bondsi , jd can
be parallel for surfaces that are not smooth.

We study two kinds of models in this paper. The first,
which will be denoted by model 1, is a model defined by

Z1 =E p
i=1

N

dXiexpf− sS1 + bS2dg, smodel 1d,

S1 = o
si j d

sXi − Xjd2, S2 = o
i

o
jsid

f1 − nsid ·n jsidg, s4d

where the center of the surface is fixed to remove the trans-
lational zero mode.S2 is identical with Eq.(3).

The second model, which will be denoted by model 2, is
a tensionless model defined by

Z2 =E p
i=1

N

dXiexpf− sbS2 + Vdg, smodel 2d,

S2 = o
i

o
jsid

f1 − nsid ·n jsidg, s5d

whereS2 is identical with that of model 1 in Eq.(4) andV is
the hard wall potential defined by

VsuXi − Xjud = H0 s0 , uXi − Xju , r0d,

` sotherwised.
s6d

The value ofr0 on the right-hand side of Eq.(6) is fixed to
r0=Î1.15. As a consequence we havekosXi −Xjd2l /N.3/2,
which holds for model 1 which contains the Gaussian term
S1. It should be noted that model 2 is considered to be inde-
pendent of the hidden length introduced byr0. The Monte
Carlo (MC) results are independent of the value ofr0. This
was, in fact, precisely checked in Ref.[15].

Figures 1(a) and 1(b) show the range of interactions de-
scribed byS2 in Eq. (3) and the ordinaryS2 in Eq. (1). A
difference betweenS2 in (3) andS2 in Eq. (1) can be seen in
the number of triangles whose normal vectors interact with

the one of a given triangle, which is shaded in Figs. 1(a) and
1(b). The number of triangles forS2 in Eq. (3) is dependent
on a given triangle and hence locally changes, while the
number forS2 in Eq. (1) is always 3.

We use the canonical Metropolis Monte Carlo technique.
Spheres are triangulated by linking uniformly scattered
points. The histograms of coordination number of surfaces
are identical with those shown in Ref.[15].

The positionX of vertices is updated with the MC tech-
nique by moving the current positionX to a new position
X8=X+dX, wheredX is chosen in a small sphere by using
uniform random numbers. The radiusR0 of the small sphere
is fixed toR0=el0, wherel0 is the mean bond length which is
computed at every 250 MCS(Monte Carlo sweeps), and a
constante is fixed at the beginning of the simulation to main-
tain 50% –55% acceptance rate for model 1 and 55% –65%
for model 2. The radiusR0 becomes almost constant, because
l0 is constant in the equilibrium configurations.

We impose the lower bound 10−6A0 on the area of tri-
angles, whereA0 is the mean area of triangles computed at
every 250 MCS. As a consequence, updates ofX are con-
strained so that the resulting area of the triangles becomes
larger than 10−6A0. However, the areas of almost all triangles
are larger than 10−6A0 in our MC simulations without the
lower bound; hence, it seems that the areas are almost free
from such a constraint. No constraint is imposed on the bond
length.

III. RESULTS

We first showS1/NB of model 1 and model 2, respec-
tively, in Figs. 2(a) and 2(b), whereNB is the total number of
bonds. It should be noted thatS1/NB is the mean bond length
squaredl0

2. S1/NB in Fig. 2(a) of model 1 is completely com-
patible with the expected resultS1/N=3/2, since NB=3N
−6s.3Nd on the spherical surfaces. In fact, a typical sample
in Fig. 2(a) is S1/NB=0.500 15±0.000 12 atb=0.476. More-
over, S1/NB in Fig. 2(b) of model 2 is also compatible with
our expectationS1/N.3/2 as already stated in the para-
graph below Eq.(6), although the Gaussian termS1 is not
included in the Hamiltonian of model 2. Thus, we confirmed
that l0 is constant in the equilibrium configurations in both
models.

FIG. 1. (a) Ranges of interaction between normal vectors of
triangles forS2 in Eq. (3) and(b) those forS2 in Eq. (1). The normal
vector of the shaded triangle interacts with those of the surrounding
triangles in(a) and (b). Small spheres represent vertices.

FIG. 2. (a) S1/NB vs b of model 1 and(b) S1/NB vs b of model
2, whereNB is the total number of bonds.N=1500.
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The specific heatCS2
is a fluctuation of the bending en-

ergy and is given by

CS2
=

b2

N
skS2

2l − kS2l2d. s7d

Total number of MCS is about 0.8,1.03108 for N
=340,N=600, 1.53108 for N=1000, 33108 for N=1500,
and 2.23108 for N=2500 at the transition pointsbcsNd for
model 1. The number of MCS atbÞbcsNd is relatively
small. The total number of MCS for model 2 is smaller than
that for model 1, since the speed of convergence of model 2
is relatively faster than model 1.

Figure 3(a) showsCS2
vs b of model 1. The peak values

CS2

max of model 1 are plotted in Fig. 3(b) againstN in a log-
log scale. Figures 3(c) and 3(d) are results obtained by model
2. The number of molecules isN=340, N=600, N=1000,
andN=1500 for model 2.

The slope of the straight lines in Figs. 3(b) and 3(d) rep-
resents the critical exponents defined by

CS2

max, Ns. s8d

The largest three data in each figure are included in the fit,
and we have

s1 = 0.798s66d smodel 1d,

s2 = 0.914s166d smodel 2d.

The values1=0.798s66d is smaller than 1 and hence implies
that the order of the phase transition of model 1 is of second
order. However, as we will see next, the order of the phase

transition of model 1 is considered to be of first order. While
s1,1, the values2=0.914s166d almost equals to 1 and
hence suggests that model 2 undergoes a first-order phase
transition.

To clarify the order of the transition of model 1, we plot in
Fig. 4(a) the variation ofS2/NB against the number of MCS.
The seriesS2 shown in Fig. 4(a) was obtained at every 5
3104 MCS at the transition pointb=bcsNd on the surface of
size N=2500. The corresponding histogramhsS2/NBd is
drawn in Fig. 4(b). Figures 4(c) and 4(d) are the results ob-
tained by model 2 of sizeN=1500.

We clearly see in Fig. 4(a) that there are two distinct
states which represent a discontinuous phase transition in
model 1. The histogram in Fig. 4(b) shows more clearly the
existence of the two states separated by a gap ofS2 in model
1. It is also easy to understand from Figs. 4(c) and 4(d) that
model 2 undergoes a first-order phase transition character-
ized by a gap ofS2.

The mean-square sizeX2, defined by

X2 =
1

N
o

i

sXi − X̄d2, X̄ =
1

N
o

i

Xi , s9d

is plotted in Fig. 5(a) against the number of MCS of model 1.
The corresponding histogramhsX2d is drawn in Fig. 5(b).
Figures 5(c) and 5(d) are the results obtained by model 2. We
see two different sizes at the transition point in each model
and hence consider that the phase transitions in both models
are characterized also by the discontinuity ofX2. The reason
why we useX2 obtained atb=0.443 in Figs. 5(c) and 5(d) is
that the double peaks in the histogram ofX2 at b=0.443 are

FIG. 3. (a) CS2
vs b and(b) CS2

max vs N in log-log scale. Both(a)
and(b) are obtained by model 1 whose Hamiltonian isS1+bS2. (c)
CS2

vs b and (d) CS2

max vs N in log-log scale. Both(c) and (d) are
obtained by model 2 whose Hamiltonian isbS2+V.

FIG. 4. (a) Variation of S2/NB against the number of MCS and
(b) the histogramhsS2/NBd, obtained by model 1. The results ob-
tained by model 2 are shown in(c) and (d).
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clearer than atb=0.442 where the histogram ofS2/NB plot-
ted in Figs. 4(c) and 4(d) were obtained.

The Hausdorff dimension[33–35] is defined by

X2 , N2/H. s10d

The gap ofX2 at the transition point implies thatH discon-
tinuously changes at that point.

We plot in Fig. 6(a) X2 vs b of model 1. The mean square
sizeX2 at b=bcsNd is plotted againstN in a log-log scale in
Fig. 6(b). The straight line denoted bysmoothis obtained by
fitting X2, each of which isthe largerX2 in the double peaks
shown in Fig. 5(b). Another straight line denoted by
crumpledis obtained by fitting the smallerX2 in the peaks.
Errors of X2 were not included in the least-squares fitting,
since the fitting was done by using only the peak values ofX2

in the histogram shown in Fig. 5(b). Figures 6(c) and 6(d)
show the results of model 2.

From the slope of the straight lines in Figs. 6(b) and 6(d),
we have

H1s↑d = 2.13s17d, H1s↓d = 3.66s107d smodel 1d,

H2s↑d = 2.16s30d, H2s↓d = 7.84s977d smodel 2d.

s11d

Hs↑dfHs↓dg is considered as the Hausdorff dimension in the
smooth[crumpled] phase atb.bc fb,bcg just above[be-
low] bc in each model. The reason for the large errors in both

H1s↓d and H2s↓d seems come from the fact that there are a
few data points ofX2 included in the fitting.

We understand from the straight lines in Figs. 6(b) and
6(d) that the phase transition of model 2 is relatively stronger
than that of model 1, although both transition are of first
order. The gap ofH at b=bc of model 2 is relatively larger

FIG. 5. (a) Variation of X2 against the number of MCS and(b)
the histogramhsX2d, obtained by model 1. The results obtained by
model 2 are shown in(c) and (d).

FIG. 6. (a) X2 vs b of model 1 and(b) X2 vs N at the transition
point b=bcsNd. The results obtained by model 2 are shown in(c)
and (d).

FIG. 7. Snapshots of model 1 surfaces obtained at(a) b
=0.475 (crumpled phase), (b) b=0.478 (smooth phase), and the
sections of the surfaces in(a) and (b) are shown in(c) and (d),
respectively.N=2500.
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than that of model 1; this difference ofH can be visible in
the slope of the straight lines in Figs. 6(b) and 6(d).

There is no difference between the surfaces in the smooth
phase of the models in this paper and those of[15], while the
surfaces in the disordered(or crumpled) phase of the models
in this paper are more crumpled than those in[15]. The
Hausdorff dimension atb.bc of the models and those of
[15] are comparable, although the order of the transition of
the models in this paper is different from that in[15]; the
models in[15] have a continuous phase transition.

We note also that bothH1s↑d and H2s↑d are compatible
with (or slightly smaller than) the Flory predictionH=2.5,
and they are almost compatible with an analytical resultH
=2.39s23d which corresponds to the scaling exponentn
=0.84±0.04 in[36] where n=2/H. The valuesH1s↑d and
H2s↑d in Eq. (11) imply that the surfaces are relatively swol-
len and smooth in the smooth phase atb.bc in both models.

In order to see the surfaces, we show snapshots of size
N=2500 of model 1 in Figs. 7(a) and 7(b), one of which is
obtained in the crumpled phase atb=0.475 and the other in
the smooth phase atb=0.478. The sections of them are
shown in Figs. 7(c) and 7(d). The surface swells in the
smooth phase as expected. We also find that the surface in
Fig. 7(b) is smooth only at long-range scales and rough at
short scales. This is compatible with that seen inthe model
with ordinary bending energy[15]. The surfaces of model 2
are almost the same as those in Fig. 7.

IV. SUMMARY AND CONCLUSIONS

We have shown that the continuous phase transition seen
in ordinary tethered membrane models is strengthened in two
kinds of tethered membrane models, whose bending energy
is defined by using the normal vectors at the vertices. One of
the models is defined by the HamiltonianS1+bS2, and the
other is a tensionless model defined bybS2+V, whereV is a
hard wall potential. It was shown by extensive MC simula-
tions that both of the models undergo a first-order phase
transition which is characterized by a gap ofS2. The size of
the spherical surfaces and the Hausdorff dimension discon-
tinuously change at the phase transition in both models.

The definition of the Hamiltonian remains in the frame-
work of the membrane elasticity of Helfrich. The bending
energy in Eq.(3) utilized in this paper appears to induce a
non-nearest-neighbor interaction between normal vectors of
the surface. In fact, the range of the interaction is a bit larger
than that of the ordinary bending energy as depicted in Fig.
1. However, the bending energy in Eq.(3) is written by the
normal vectors of Eq.(2) and the normal vectors of the
neighboring triangles, and hence it is defined only by local
geometric quantities of the surface just like the ordinary
bending energy in Eq.(1).
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